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Abstract
The criterion for the applicability of any tomographic method is its ability to
construct the desired inner structure of a system from external measurements,
i.e. to solve the inverse problem. Magnetotomography applied to fuel cells
and fuel cell stacks aims at determining the inner current densities from
measurements of the external magnetic field. This is an interesting idea since in
those systems the inner electric current densities are large, several hundred mA
per cm2and therefore relatively high external magnetic fields can be expected.
Still the question remains how uniquely the inverse problem can be solved.
Here we present a proof that by exploiting Maxwell’s equations extensively
the inverse problem of magnetotomography becomes unique under rather mild
assumptions and we show that these assumptions are fulfilled in fuel cells and
fuel cell stacks. Moreover, our proof holds true for any other device fulfilling
the assumptions listed here. Admittedly, our proof has one caveat: it does not
contain an estimate of the precision requirements the measurements need to
fulfil for enabling reconstruction of the inner current densities from external
magnetic fields.

PACS numbers: 02.30.Zz, 42.30.Wb, 82.47.Ed, 82.47.Gh, 82.47.Lh, 82.47.Nj,
82.47.Pm

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the last two decades fuel cells and fuel cell stacks (the arrangement of many fuel cells
in series) have attracted much attention [1–6] because their efficiency, not limited by Carnot’s
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Figure 1. Schematic representation of the MEA in a fuel cell. The MEA consists of two gas
diffusion layers (GDL), the catalytic layer at the anode denoted by (a), the electrolytic layer
denoted by (b) and the catalytic layer at the cathode denoted by (c). The layers containing the
channels for the fuel and the exhaust gas are fabricated, e.g. from graphite. Note that the scales in
depth width and height are not identical: typical height is 20 cm, typical depth is 20 cm as well,
typical thickness of the layers (a), (b) and (c) is 0.06 mm each, typical thickness of the GDL is
0.2 mm each and the thickness of the graphite layers is 1 mm each or less.

law, can in principle be close to 1. However, they are very complex devices: from a theoretical
point of view, since their functioning is still not well understood in detail, and from a practical
point of view, since the efficiency of today’s fuel cells is far below its theoretical value.
Moreover, they tend to become unstable [7, 8].

Under such circumstances good diagnostics is essential. At the same time it is desirable
to avoid direct measurements in the inner of these devices, since any local manipulation in
the interior may change the internal state. Thus, tomographic methods are favoured and
magnetotomography [9] seems to be one option, because the current densities in fuel cells and
fuel cell stacks are large: several hundreds mA per cm2.

It is remarkable that the forward problem of magnetotomography is relatively easy: in
fact, if the relative permeability μ is close to 1—which holds true in present day fuel cells—and
if external perturbations can be neglected—which is more questionable—then the Biot–Savart
operator suffices to obtain a unique solution of the magnetic field from the knowledge of
the internal electric current density. The price paid is a huge nullspace when trying to solve
the inverse problem just by use of the Biot–Savart operator [10]. This nullspace can be
reduced to a certain extent when using further restrictions (cf [11] and references therein).
Nevertheless, till today a nullspace remains when trying this ansatz for fuel cells and fuel cell
stacks respectively.

This is not surprising. The external magnetic field depends on the current densities j at
any point in the fuel cell (fuel cell stack). But that is not what we really need. We intend much
less: the normal component of the current density jn passing through a so-called membrane
electrode assembly (MEA). If we want to proceed successfully, we have to find a connection
between jn and j. This connection is given by Maxwell’s equations and Ohm’s law—provided
we know how an MEA influences the currents in the fuel cell (fuel cell stack). The kind of
this influence will be explained below.

The current densities in a fuel cell are well described in the various layers by Ohm’s
law except in the MEA, cf figure 1. The MEA is the heart of the fuel cell. It contains

2



J. Phys. A: Math. Theor. 42 (2009) 495205 H Lustfeld et al

two catalytic layers where the catalytic processes take place, and an electrolytic layer,
where the ionic transport takes place. To describe all this on a microscopic scale is a
formidable task—fortunately, it does not make much sense either as far as magnetotomography
is concerned. In fact, it is hopeless to get information from magnetotomography on a
microscopic scale [12, 14]. Therefore, a representation for the MEA on a non-microscopic
scale is needed which is appropriate, i.e. physically realistic and mathematically well defined.
Such a representation has been introduced recently [14, 15] and will be discussed in
section 2. This is the preparation for section 3 in which the proof of uniqueness will be
given. The further assumptions for and the consequences of this proof will be discussed in the
conclusion.

2. Representation of the MEA on a non-microscopic scale

The MEA is composed of two gas diffusion layers (GDLs) constituting its external surfaces.
Between those are (a) the catalytic layer at the anode where chemical reactions (e.g.
H2 → 2H+ + 2e−) as well as transport of ions and electrons take place, (b) the electrolytic
layer, through which the ions are migrating and (c) the catalytic layer at the cathode where
again chemical reactions (e.g. 2H+ + 1/2O2 + 2e− → H2O) as well as transport of ions and
electrons take place. In these three layers Ohm’s law is not valid (whereas the current through
the GDL can be described by Ohm’s law). As is well known from equivalent circuit schemes,
it is possible to introduce effective, space dependent conductivities σ(r) for these three layers
that are treated as parameters and describe the state of the MEA around an operating point
[12, 13]. Here we use a different approach. On a non-microscopic scale the state of the
MEA is well described by the normal current density jn(r) going through it. Moreover, the
three layers together have a thickness of about 0.2 mm—a scale that is below the resolution
magnetotomography can achieve [12, 14]. Therefore, the three layers can be replaced by (i) a
boundary layer in the middle of these three layers to which the normal current densities on the
MEA now refer to, (ii) two small layers of about 0.1 mm thickness located on both sides of
this boundary layer with transverse and longitudinal conductivities obtained from an operating
point of the MEA. Because the thickness of these layers is very small, exact values for these
conductivities are not required5.

In this way the real MEA, in which complicated mixed chemical and transport processes
occur, has been replaced by an equivalent MEA. Chemical processes do not appear directly and
current densities on a microscopic scale, irrelevant for magnetotomography, have disappeared.
However, the really important quantity, the normal current density through the MEA surface,
has been fully taken into account. Furthermore, the original thickness of the above-mentioned
three layers has been included by small layers around a new boundary layer. Both GDLs are
fully incorporated in this scheme. We denote the present replacement of the three inner layers
of the original MEA by two layers and an internal boundary layer on which the normal current
density is well defined, as the thin MEA approximation [14, 15].

It should be mentioned that—as in the original MEA—the electric potential is not equal
on both sides of the newly constructed boundary layer. This is not only harmless but also quite
necessary since it needs power to move currents from one side of the MEA to the other side.
This power is provided by the underlying chemical processes.

5 In reality a focused normal current entering the MEA will have spread when leaving it on the other side. It is a very
good choice setting the transverse conductivity in these small layers such that this spreading is taken into account
correctly. The longitudinal conductivity is not critical, setting it to the value of the transverse conductivity is one
possible option.
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Using the thin MEA approximation we have a quite realistic description of an MEA and
at the same time a mathematically well-defined structure. It will turn out that the uniqueness
of magnetotomography can now be proven for fuel cells and fuel cell stacks. This is shown in
the next section.

3. Proof: uniqueness of the inverse problem

The fuel cell and the fuel cell stack respectively consist of an area Gb with certain mathematical
properties. These are now listed.

Definition 1. A 3-dimensional area is denoted as Gb if

(I) Gb is connected.
(II) Gb can be divided into N connected areas Gi with6

(1)
o

Gi ∩ o

Gj= ∅ for i �= j (1)

(2) in each Gi the differential equation −∇2�i = 0 with boundary condition ∂�/∂n

(derivative with respect to the outer normal) has (up to a constant) a unique solution
in Gi and the surface of Gi is such that Gauss’s theorem applies,

(3) in each Gi the conductivity σi is constant and the current density j is given by Ohm’s
law:

ji = −σi∇�i.

(III) A permutation ν = p(k), 1 � k � N , exists with the following.

(1) Given any 1 � k � N and ν = p(k), denoting by Stot,ν the exterior surface of
∪k

k′=1Gp(k′), by Sν the surface of Gν and by Spart,ν the surface, given by

Spart,ν = Sν ∩ Stot,ν , (2)

Spart,ν �= ∅ (3)

(2) ∃ 3 points rν,i , i = 1, 2, 3, with the properties
(i)

rν,i ∈ Spart,ν , i = 1, 2, 3 (4)
∃ a neighborhood U(rν,1) around rν,1 on Spart,ν , i.e. U(rν,1) ⊂ Spart,ν with

n(r) = const for r ∈ U(rν,1). (5)
(ii) The same holds true for rν,2:

n(r) = const for r ∈ U(rν,2) (6)
(iii) ∃ a neighborhood U(rν,3) around rν,3 on Spart,ν , i.e. U(rν,3) ⊂ Spart,ν with

n(r) = continuous for r ∈ U(rν,3) (7)
(iv) n(rν,1), n(rν,2), n(rν,3) are linear independent of each other.
Note. It might happen that a point, say rν,1, is located on a position where two
surfaces touch each other. That does not matter here since due to continuity we can
find a point r′

ν,1 and an equivalent neighborhood U ′(r′
ν,1) ⊂ U(rν,1) where this does

not happen.

6 In this paper we use the notation:
o

X is the interior of X.
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Figure 2. Schematic representation of a fuel cell stack (with 2 MEAs only) build up from
12 connected areas Gi of materials with different conductivities. One possible permutation is
p(1) = 12, p(2) = 1, p(3) = 2, p(4) = 3, etc. Gb fulfills all requirements of definition 1.
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Figure 3. A rectangle consisting of 2D triangles Gi with different conductivities σi each. All
Gi have one 1D external surface only. In 3D this becomes a cuboid, consisting of 3D Gi with
only three external surfaces. Property III,2,iv of definition 1 is not fulfilled, because the three unit
normals are linear dependent. Therefore, according to that definition this cuboid is not an area of
type Gb. However, this would be quite different if, e.g. the upper surface in G3 would be arched.
Then this modified cuboid would be an area of type Gb and the permutation p would be p(1) = 2,
p(2) = 1, p(3) = 4, p(4) = 3.

Examples. An example for an area Gb of a fuel cell stack fulfilling the assumptions I–III of
definition 1 is presented in figure 2. An example of an area fulfilling assumptions I and II, but
not III, is shown in figure 3. Fuel cells and fuel cell stacks always fulfill conditions I–III.

We now give the proof of the following theorem.

Theorem 1. If an area has the properties

(a) it is of type Gb, i.e. it has the properties given in definition 1,
(b) its relative permeability μ = 1
(c) all conductivities in the Gi, σi , are scalars and 0 � σ < ∞

then magnetotomography is unique.

Proof. The proof is given by contradiction: let us assume that magnetotomography is not
unique. This means that there are two solutions �1 and �2 with different current densities in
Gb but with the same external currents and the same external magnetic field. We consider the
properties of

�D = �(1) − �(2). (8)
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(a) (b)

Figure 4. A layer with different longitudinal σ‖ and transverse σ⊥ conductivity can be
approximated by two layers with scalar conductivities σ1 and σ2 fulfilling the equations
σ1 + σ2 = 2σ⊥ and 1/σ1 + 1/σ2 = 2/σ‖, cf (a). The approximation becomes much better if
not just one layer but M thinner layers of the same two materials with (scalar) conductivities as
before are taken, cf (b). The magnetic field H converges for M → ∞ to the magnetic field of the
layer with σ‖ �= σ⊥.

Its magnetic field HD is not due to external currents. This property together with μ = 1 means
that the magnetic field HD is generated exactly by the vector potential of Biot–Savart:

AD(r) = 1

4π

∫
Gb

d3r ′ 1

|r − r′| jD(r′) (9)

where AD is the vector potential of HD and jD is obtained from

jD = −σi∇�D in Gi. (10)

This can be written as

AD(r) = A1(r) + ∇W(r)

with

A1(r) = 1

4π

∑
i

∫
Gi

d3r ′ ∇′
[ −1

|r − r′|σi�D(r′)
]

W(r) = 1

4π

∑
i

∫
Gi

d3r ′ σi�D(r′)
−1

|r − r′| . (11)

∇W does not contribute to the magnetic field. Therefore, the magnetic field is obtained from
A1 alone. We transform the volume-integral in the formula for A1 by partial integration into
surface integrals. Of course, all the external surfaces as well as all internal boundary layers
between the Gi have to be taken into account7. Partial integration leads to

A1 = 1

4π

∑
(i,j)

∫
F(i,j)

ds n(i,j)(r′)
−1

|r − r′| [σi�Di(r′) − σj�Dj (r′)]. (12)

F(i,j) denotes the boundary area between Gi and Gj. The summation index (i, j) refers to a
sum over all inner boundary layers and the outer surface. The outer side of the outer surface
gets the index j = 0; thus equation (12) is well defined by setting �D,j=0 = 0.

7 Note that the MEAs lead to the following effect: consider a boundary layer F(i,j) (with unit normal n(i,j)) separating
Gi from Gj. Then the potential �Di of Gi may be different from �Dj of Gj on the boundary layer Fi,j .
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Now it is clear that A1 and therefore the magnetic field HD are analytic in each
o

Gi . Next
we use property III,2,i of definition 1. Let ν = p(N). Then on the surface Spart,ν there is
a point rν,1 and a corresponding unit normal n(rν,1). First, let us assume that n(rν,1) points
in the z-direction. This means that the integral for A1,x and A1,y has no contribution from a
neighbourhood U(rν,1). But A1 is analytic in the exterior of Gb and in Gν . Therefore, ∃ a
(3D) ball with finite radius ε, Kε(rν,1) in which both, A1,x and A1,y , are analytic. Therefore,
HDz must be analytic in Kε(rν,1) as well. Therefore, we can continue HDz analytically from

the exterior of Gb into Gν . Since HDz = 0 in the exterior, it must vanish in
o

Gν .
The generalization is clear: the component of HD along n(rν,1) vanishes in Gν . Because

of property III,2,ii the same holds true for the component of HD along n(rν,2). Next we exploit
property III,2,iii: we construct a line through the point rν,3 with the tangent vector given by
the cross-product

bν = n(rν,1) × n(rν,2). (13)

Because of property III,2,iv bν cannot vanish. For the same reason the projection of bν onto
n(rν,3) cannot vanish either. Therefore, we can parametrize the equation for the line and ∃ ε

rline(t) = rν,3 + tbν, t real (14)

such that r(t) ∈ Gν for 0 < t < ε. We take this line as the axis of a cylinder c(2t, η) with
length 0 < 2t < 2ε, whose centre is located at rν,3. Because of continuity (cf (7)) there is a
diameter η > 0 of the cylinder such that it penetrates exclusively into Gν , i.e.

c(2t, η) ∩ (Gb \ Gν) = ∅ for t < ε. (15)

We calculate the integral over the surface of the cylinder, Fc(2t,η). It follows from ∇BD = 0
and μ = 1

I (2t, η) = 0 =
∫

Fc(2t,η)

n · HD ds. (16)

But HD = 0 outside Gb; the normal components of HD vanish on the cylinder side by
construction. Therefore, the integral over the top surface of the cylinder has to vanish as well.
Since η can become arbitrarily small, this is only possible if HD(rline(t)) · bν vanishes for
0 < t < ε. Because of continuity, we can repeat the procedure after slightly moving rν,3

along Spart,ν . Thus, we can prove that there must be a ball Kε(r0) ⊂ Gν with HD(r) · bν = 0

for r ∈ Kε(r0). Because HD is analytic in
o

Gν , it means that

HD = 0 in
o

Gp(N) . (17)

Because of property III in definition 1 we can continue with the same arguments and show
that

HD = 0 in
o

Gp(N−1) . (18)

Repeating this procedure we have8

HD(r) ≡ 0. (19)

Because of ∇ × HD = jD all electric currents are zero in contradiction to the assumption.
This ends the proof. �
8 At first we have the restriction that HD could be nonzero on the internal boundary layers and the external surface
of Gb. But it is not possible that a finite electric current exists on 2D areas in Gb due to assumption (c) of
theorem 1. Then taking the integral form of ∇ ×HD = 0 and ∇HD = 0 leads to the conclusion that HD has to vanish
everywhere.
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In real fuel cells and fuel cell stacks some materials, in particular graphite, are being used
in which longitudinal and transverse conductivities are different. Then the conductivity is no
longer a scalar but a matrix, albeit a simple one: the matrix is diagonal, the first element in
the diagonal is different from the other two. Generalizing the previous argument to this case
is nearly trivial. The reason is that two adjacent layers with different (scalar) conductivities
can simulate this situation, cf figure 4. Now if an electric current could appear in the solution
of �D in case the longitudinal conductivity σ‖ is different from the transverse one, σ⊥, this
could be simulated by M small layers of two kinds put alternately together. The (external
and internal) magnetic field H (obtained from the Biot–Savart integral) would converge in
the limit M → ∞ and therefore an internal magnetic field had to appear already at finite M.
But then application of theorem 1 would be possible and would again lead to a contradiction.
Therefore, magnetotomography is unique even in the case that longitudinal and transverse
conductivities are different in the materials.

4. Conclusion

In this paper we have shown that by use of magnetotomography the internal electric current
densities of fuel cells and fuel cell stacks can be determined uniquely. The assumptions are
rather mild:

(A) The cells must consist of nonmagnetic and nonparamagnetic material. In other words, the
relative permeability μ must be close to 1. That is fulfilled in the fuel cells being used at
present. And as far as we know there is no urgent necessity of changing this in the future.

(B) The proof rests on the assumption that the real MEA can be replaced by another one
that avoids taking into account the very complex chemical and physical processes and
currents occurring on a micro scale. We think that our approximation of the MEA (we
call it the thin MEA approximation) is realistic and at the same time avoids those small
scales. This feature is advantageous because magnetotomography is unable to resolve
processes taking place on a very fine scale [12, 14] anyway.

A disadvantage of our proof is a practical one: there is no estimate in the proof how
precise magnetic fields have to be determined. We believe that a final answer to this question
can only be found numerically; estimates for fuel cells have been worked out already [12, 14].
Estimates for fuel cell stacks are in progress.

We would like to point out that our proof is not restricted to fuel cells and fuel cell stacks
but is valid for any areas having the properties listed in definition 1.
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